Matrix Completion

Yuepeng Yang

University of Chicago, Department of Statistics

Oct 12, 2024

Yuepeng Yang (University of Chicago, Depart

Matrix Completion

∃ >

< 1 k

э

What is matrix completion?

2 How do we solve the problem?

What question are we (still) asking?

4 Wrap-up

Netflix Prize

- In 2006, Netflix offers \$1 million to improve 10% over its own algorithm Cinematch
- Data consists of 100,480,507 ratings, 480,189 users, 17,770 movies

	Movie A	Movie B	Movie C	Movie D	Movie E
Alice	?	4	1	?	?
Bob	?	2	?	8	1
Charlie	?	?	?	?	?
David	9	2	?	?	1
Euler	?	2	?	5	?

• Latent structure allow us to infer the unobserved entries

Target	Drug A	Drug B	Drug C	Drug D	Drug E
Protein A	?	\checkmark	?	×	?
Protein B	?	×	?	\checkmark	?
Protein C	?	?	×	?	?
Protein D	\checkmark	×	×	?	\checkmark
Protein E	?	×	?	\checkmark	?

イロト イヨト イヨト イヨト

æ

Image / Video restoring

(a) Sequence 1

(b) Sequence 2

figure credit: Ji et al., 2010. Robust video denoising using Low rank matrix completion.

Yuepeng Yang (University of Chicago, Depart

Matrix Completion

Oct 12, 2024

∃ >

The matrix completion problem

Observe

$$oldsymbol{M} = \mathcal{P}_{\Omega}(oldsymbol{M}^{\star})$$

Goal: estimate M^* given M and Ω .

The observation set Ω

	Movie A	Movie B
Observe: Alice	?	4
Bob	1	2
	Movie A	Movie B
Solution 1: Alice	2	4
Bob	1	2
	Movie A	Movie B
Solution 2: Alice	10	4
Bob	1	2

<ロト <問ト < 目と < 目と

3

		Movie A	Movie B
Observe:	Alice	?	4
	Bob	1	2
	1		
		Movie A	Movie B
Solution 1:	Alice	2	4
	Bob	1	2
		Movie A	Movie B
Solution 2:	Alice	10	4
	Bob	1	2

Which solution is the correct one?

æ

Singular value decomposition:

$$\boldsymbol{M} = \sum_{i=1}^n \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^\top = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^\top$$

where $\boldsymbol{u}_i, \boldsymbol{v}_i$ are orthonormal basis

Intuitively, it iteratively selects the rank-1 matrix the represents the most signal in M and σ_i is the signal strength

Low-rank assumption

comparison between the image and a rank-10 approximation figure credit: Li et al., 2019. A Survey on Matrix Completion: Perspective of Signal Processing.

The low-rank matrix completion problem

Observe $n_1 \times n_2$ matrix

$$\boldsymbol{M} = \mathcal{P}_{\Omega}(\boldsymbol{M}^{\star})$$

where \boldsymbol{M}^{\star} is a rank-*r* matrix, i.e., it can be written as $\boldsymbol{M}^{\star} = \boldsymbol{X}^{\star} \boldsymbol{Y}^{\star \top}$ for matrix $\boldsymbol{X}^{\star} \in \mathbb{R}^{n_1 \times r}$ and matrix $\boldsymbol{Y}^{\star} \in \mathbb{R}^{n_2 \times r}$. Goal: estimate \boldsymbol{M}^{\star} given \boldsymbol{M} and Ω .

The decomposition of the hidden rank-*r* matrix **M***

The observation set Ω

Yuepeng Yang (University of Chicago, Depart

Oct 12, 2024

	HF 1	HF 2						
Alice	5	4	Mauias	•	D	C	D	Е
	-	•	iviovies	A	D	C	υ	С
Rop	1	2			_		-	
<u>.</u>	_		HF1	1	4	3	6	4
Charlie	5	1			_		_	
			HF 2	5	2	5	8	1
David	9	2		I				
Euler	7	2						

$\mathsf{HF}=\mathsf{Hidden}\;\mathsf{Feature}$

æ

Find a matrix $\boldsymbol{L} \in \mathbb{R}^{n_1 \times n_2}$ such that

$$\boldsymbol{M} = \mathcal{P}_{\Omega}(\boldsymbol{L})$$

and

$$\mathsf{rank}(\mathbf{L}) = r$$

We also assume each entry is observed with i.i.d. probability p.

< 47 ▶

э

 $\min_{\boldsymbol{L} \in \mathbb{R}^{n_1 \times n_2}} \operatorname{rank}(\boldsymbol{L})$

such that

 $\pmb{M} = \mathcal{P}_{\Omega}(\pmb{L})$

Yuepeng Yang (University of Chicago, Depart

イロト イポト イヨト イヨト

æ

rank(*L*) $\min_{\boldsymbol{L}\in\mathbb{R}^{n_1\times n_2}}$

such that

$$\boldsymbol{M} = \mathcal{P}_{\Omega}(\boldsymbol{L})$$

rank minimization is NP-hard!

Yuepeng Yang (University of Chicago, Depart

æ

Relaxing the rank

- Rank as a function is hard to optimize
- $\operatorname{rank}(\boldsymbol{L}) = \|\sigma(\boldsymbol{L})\|_0$: number of non-zero singular values
- $\|\boldsymbol{L}\|_{\star} = \|\sigma(\boldsymbol{L})\|_1$: sum of singular values

$$\min_{\boldsymbol{L}\in\mathbb{R}^{n_1\times n_2}} \|\boldsymbol{L}\|_* \quad \text{s.t.} \quad \boldsymbol{M}=\mathcal{P}_{\Omega}(\boldsymbol{L})$$

It is a convex program and polynomial-time computable The minimizer \widehat{L} recovers M^{\star} exactly under reasonable conditions

A rank-*r* matrix *L* can be written as $L = XY^{\top}$ for some $n_1 \times r$ matrix *X* and $n_2 \times r$ matrix *Y*.

$$\boldsymbol{M} = \mathcal{P}_{\Omega}(\boldsymbol{L})$$
 s.t. rank $(\boldsymbol{L}) = r$

A rank-*r* matrix \boldsymbol{L} can be written as $\boldsymbol{L} = \boldsymbol{X} \boldsymbol{Y}^{\top}$ for some $n_1 \times r$ matrix \boldsymbol{X} and $n_2 \times r$ matrix \boldsymbol{Y} .

min
$$\|\boldsymbol{M} - \mathcal{P}_{\Omega}(\boldsymbol{X}\boldsymbol{Y}^{\top})\|_{\mathsf{F}}^2$$

A rank-*r* matrix *L* can be written as $L = XY^{\top}$ for some $n_1 \times r$ matrix *X* and $n_2 \times r$ matrix *Y*.

min
$$\|\boldsymbol{M} - \mathcal{P}_{\Omega}(\boldsymbol{X}\boldsymbol{Y}^{\top})\|_{\mathsf{F}}^2$$

A non-convex program

The two faces of non-convexity

Ge, Lee, and Ma, 2016. Neurips.

Matrix Completion has No Spurious Local Minimum.

i.e. all local minima is global

- Spectral initialization to get a good initial guess
 - Intuition:

$$\mathbb{E}\left[\frac{1}{p}\mathcal{P}_{\Omega}(\boldsymbol{M}^{\star})\right] = \boldsymbol{M}^{\star} = \boldsymbol{X}^{\star}\boldsymbol{Y}^{\star\top}$$

• Top-*r* SVD on
$$\frac{1}{p}\mathcal{P}_{\Omega}(\boldsymbol{L}^{\star})$$

$$\frac{1}{\rho}\mathcal{P}_{\Omega}(\boldsymbol{M}^{\star}) = \boldsymbol{U}_{0}\boldsymbol{\Sigma}_{0}\boldsymbol{V}_{0}^{\top} = \boldsymbol{U}_{0}\boldsymbol{\Sigma}_{0}^{1/2}\boldsymbol{\Sigma}_{0}^{1/2}\boldsymbol{V}_{0}^{\top} = \boldsymbol{X}_{0}\boldsymbol{Y}_{0}^{\top}$$

Gradient descent

$$F(\boldsymbol{X}, \boldsymbol{Y}) = \frac{1}{2p} \|\boldsymbol{M} - \mathcal{P}_{\Omega}(\boldsymbol{X}\boldsymbol{Y}^{\top})\|_{\mathsf{F}}^{2} + \frac{1}{8} \|\boldsymbol{X}^{\top}\boldsymbol{X} - \boldsymbol{Y}^{\top}\boldsymbol{Y}\|_{\mathsf{F}}^{2}$$
$$\begin{bmatrix} \boldsymbol{X}_{t} \\ \boldsymbol{Y}_{t} \end{bmatrix} = \begin{bmatrix} \boldsymbol{X}_{t-1} \\ \boldsymbol{Y}_{t-1} \end{bmatrix} - \eta_{t} \begin{bmatrix} \nabla_{\boldsymbol{X}}F(\boldsymbol{X}_{t-1}, \boldsymbol{Y}_{t-1}) \\ \nabla_{\boldsymbol{Y}}F(\boldsymbol{X}_{t-1}, \boldsymbol{Y}_{t-1}) \end{bmatrix}$$
$$\bullet \|\boldsymbol{A}\|_{\mathsf{F}}^{2} = \sum_{i,j} A_{ij}^{2}$$

 Solvable in linear time and converges to ground truth under reasonable conditions

Nuclear norm minimization	GD with spectral init
convex	non-convex
don't need to know <i>r</i>	need to know <i>r</i>
polynomial time	linear time
exact recovery	exact recovery

イロト イヨト イヨト イヨト

3

What is matrix completion?

2 How do we solve the problem?

Wrap-up

Missing patterns

Cai, Cai, and Zhang, 2016. Structured Matrix Completion with Applications to Genomic Data Integration. JASA.

Choi and Yuan, 2024. Matrix Completion When Missing Is Not at Random and Its Applications in Causal Panel Data Models. JASA.

	А	В	С	D		А	В	С	D
Alice	?	\checkmark	?	?	Alice	\checkmark	\checkmark	\checkmark	\checkmark
Bob	?	\checkmark	?	\checkmark	Bob	\checkmark	\checkmark	\checkmark	\checkmark
Charlie	?	?	\checkmark	?	Charlie	\checkmark	\checkmark	?	?
David	\checkmark	?	?	\checkmark	David	\checkmark	\checkmark	?	?
Rando	om o	bserv	/atio	n	Structu	ured	obse	rvatio	on

Chen et al. 2023. Statistical inference for noisy incomplete binary matrix. JMLR.

	A	В	С	D			A	В	С	D
Alice	0.1	0.64	0.87	0.16	-	Alice	?	\checkmark	?	?
Bob	0.54	0.34	0.56	0.23		Bob	?	×	?	×
Charlie	0.23	0.52	0.53	0.82		Charlie	×	?	\checkmark	?
David	0.7	0.02	0.94	0.33		David	\checkmark	?	?	\checkmark
Latent probability						Bina	ry ob	serva	ation	

イロト 不得 トイヨト イヨト

æ

 $\textbf{\textit{M}} = \mathcal{P}_{\Omega}(\textbf{\textit{L}}^{\star} + \textbf{\textit{E}})$

- E is entrywise independent Gaussian noise
- E is entrywise independent sub-exponential noise
 - Farias, Li, and Peng, 2022. Uncertainty Quantification For Low-Rank Matrix Completion With Heterogeneous and Sub-Exponential Noise. AISTATS
- E is entrywise independent heavy-tailed noise.
 - Wang and Fan, 2023. Robust Matrix Completion with Heavy-tailed Noise. JASA.

More structure in the data

Non-negative matrix factorization:

$$\mathbf{L}^{\star} = \mathbf{X}^{\star} \mathbf{Y}^{\star op}$$

 $L^{\star}, X^{\star}, Y^{\star}$ all positive.

ı.

	Movie A	Movie B	Movie C	Movie D	Movie E
Alice	?	4	1	?	?
Bob	?	2	?	8	1
Charlie	?	?	?	?	?
David	9	2	?	?	1
Euler	?	2	?	5	?

æ

$$oldsymbol{M} = \mathcal{P}_{\Omega}(oldsymbol{L}^{\star} + oldsymbol{E})$$

 $oldsymbol{L}^{\star} = oldsymbol{X}oldsymbol{eta} + oldsymbol{B}$

Mao, Chen, and Wong, 2019. Matrix completion with covariate information. JASA.

	A	В	С	D		Δ	R	C	П
Alice	2	4	1	?		~	D	C	
			-		Genre	Action	Sci-fi	Fantasy	Horror
Bob	!	2	!	8	Voor	1005	2020	<u></u>	2016
Charlie	2	?	?	?	rear	1995	2020	2024	2010
Charne	· ·	•	•	•	Budget	100k	20m	200m	1k
David	9	2	?	?	Budget	TOOK	20111	200111	IN

(日) (四) (日) (日) (日)

æ

- We want our algorithm to be fast, low memory cost, parallelizable, free of tuning parameters, etc.
- Recht and Ré, 2013. Parallel stochastic gradient algorithms for large-scale matrix completion. MPC.
- Yang and Ma, 2023. Optimal tuning-free convex relaxation for noisy matrix completion. IEEE TIT.

- How variable the estimate is?
- Chen et al., 2019. Inference and uncertainty quantification for noisy matrix completion. PNAS.

	A	В	С	D				
Alice	(1.4, 2.6)	4	1	(1.1, 1.3)				
Bob	(2.5, 4.5)	2	(9.1, 10)	8				
Charlie	(7.8, 9.1)	(2.1, 5.7)	6	5				
David	9	2	(5.2, 5.5)	(2.6, 4.1)				
95% CI estimate								

What is matrix completion?

2 How do we solve the problem?

What question are we (still) asking?

- Applications
 - recommendation system, data imputation, image recovery...
- Problem formulation of matrix completion
- Solution 1: nuclear norm minimization
 - convex relaxation
- Solution 2: gradient descent with spectral initialization
 - Benign landscape of non-convex optimization
- Snippet of active research questions