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Problem setting

e Finding Nash equilibrium in a finite-horizon two-player zero-sum
Markov games
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Problem setting

© At each horizon h of the game, the game is at a state s, max
player draws an action a € A from a policy p, min player draws
an action b € B from a policy v

@ Max player receives 7(s,a,b) reward, min player receives
—r(s,a,b) reward

© Then the game goes to a new state s’ in horizon h + 1. The
transition depends on the played actions a, b.

Q@ Max/min player tries the maximize/minimize total expected
reward
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Nash equilibrium

Value function (for max player) of policy pair (u, )
H
V(N) V) = Eu,l/ [Z T‘(S, a, b)‘|
i=1

Nash equilibrium: for two-player zero-sum Markov games, there exist
policy pair (u*,v*) such that

inf sup V(u,v) = V(pu*,v*) = supinf V(u,v)
vop H
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The problem

e Full information with known reward and transition functions

e The goal is to find a pair of policy in T iterations such that no
policy has e-better expected reward V'

e We focus on the dependency in T'
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Q function

e Fix a state s and horizon h

e Q)" (a,b): expected reward when max player choose a and
policy and min player choose b at horizon h and policy u, v at
horizon h+ 1 to H.
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Q function

e Fix a state s and horizon h

e Q)" (a,b): expected reward when max player choose a and
policy and min player choose b at horizon h and policy u, v at
horizon h+ 1 to H.

e In a normal form game where there is no state transition, @ is
given and independent of pu, v

Q;Mh, Qnuy: utility vector for max and min player
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Estimating the Q function in Markov games

e We are most interested in the payoff of Nash equilibrium

YN 2
Q= Q)
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Estimating the Q function in Markov games

e We are most interested in the payoff of Nash equilibrium
Q=@ "

e In each iteration, we learn a new policy for max and min player.
It would be prohibitive to compute the full @, (a,b).
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Estimating the Q function in Markov games

e We are most interested in the payoff of Nash equilibrium

YN 2
Q= Q)

e In each iteration, we learn a new policy for max and min player.
It would be prohibitive to compute the full @, (a,b).

e Alternatively, we maintain Qi (a,b) an estimate of Q7 (a,b) and
learn the policy in a fixed state s and horizon h as if it is a
normal form game

OFTRL in Markov Games 7/ 24



Solving the policies with online learning

e In each iteration, we aim to learn the best policy for each player
with respect to the estimates {Q)}, f;%

e Linear loss functions
(1) = (11, Qhvi )
i) = (1, Q4 k)

Q;uh, Qnvp: utility vector for max and min player
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Optimistic Follow-the-Regularzied Leader

Choose the regularized optimal policy (leader) with respect to reward
function Q in previous iterations.

pi (@) oc exp | sz[ W] (@) +w (@477 (@)

optimistic term

uz<b>o<exp( [tiwz[czh uh] 0) +wr [ ] <5>D

=1
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Learning with optimism

_ R(w)
n/we

t—1
t i ¢
p'(a) = argmax,, <,u, E wiu' +  w M >
i=1 Y

optimistic term

where u’ = Qv Mt = Q' 1pt~1
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Learning with optimism

R(p)

t—1
t i t
a) = argmax , E wu +  wM -
H ( ) W <:u P 2 t > U/wt

optimistic term
where u’ = Qv Mt = Q' 1pt~1

e Increasing weight that favors more recent iterations
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Learning with optimism

_ R(w)
n/we

t—1
t i ¢
p'(a) = argmax,, <,u, E wiu' +  w M >
i=1 Y

optimistic term
where u! = Q'v', Mt = Q! 1pt—!
e Increasing weight that favors more recent iterations
e Optimistic term M predicts u?

Rakhlin and Sridharan (2013) Online Learning with Predictable
Sequences
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Performance on normal form games

e FTRL works for normal form games with O(1/+/T) rate
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Performance on normal form games

e FTRL works for normal form games with O(1/+/T) rate
e OFTRL works for normal form games with O(1/T) rate

Daskalakis et al. (2021) Near-Optimal No-Regret Learning in
General Games.

Anagnostides et al. (2022) Uncoupled Learning Dynamics with
O(logT') Swap Regret in Multiplayer Games
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Algorithm for Markov Games

Zhang et al., (2022) Policy Optimization for Markov Games: Unified
Framework and Faster Convergence
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Algorithm for Markov Games

Zhang et al., (2022) Policy Optimization for Markov Games: Unified
Framework and Faster Convergence

e Policy update with OFTRL
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Algorithm for Markov Games

Zhang et al., (2022) Policy Optimization for Markov Games: Unified
Framework and Faster Convergence

e Policy update with OFTRL
e Smooth value update:
Qh(a,0) = (1 = ar)Q} " (a,) + s (r(a,b) + Qf11 (a,0))

Qﬁlﬂ(a, b) = expected reward of horizon h + 1 to H after the
transition when pf, v is played
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Algorithm for Markov Games

Zhang et al., (2022) Policy Optimization for Markov Games: Unified
Framework and Faster Convergence

e Policy update with OFTRL
e Smooth value update:
Qh(a,0) = (1 = ar)Q} " (a,) + s (r(a,b) + Qf11 (a,0))

Qﬁlﬂ(a, b) = expected reward of horizon h + 1 to H after the
transition when pf, v is played

e Output mixture policies

S

Z T,Uh
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Theoretical challenges in Markov Games

e Except for the last horizon, the Nash equilibrium pay-off matrix
Q* is not available

e In two-player zero-sum normal form game, the sum of regrets is
always non-negative. This fails in Markov game because of
approximation in Q*

e Aggregation of estimation errors and regrets over horizons of the
game.
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Main theorem

e Quantification of the gap to Nash equilibrium:

H
S r(s.a. b>]
=1

V(p,v) =Eup

NEgap(s, v) = sup V(u!,v) — inf V(. 1)
w v
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Main theorem

e Quantification of the gap to Nash equilibrium:

H
Zr(s, a, b)]

=1

V(p,v) =Eup

NEgap(s, v) = sup V(u!,v) — inf V(. 1)
w v

e Zhang et al., (2022) Policy Optimization for Markov Games:
Unified Framework and Faster Convergence:

NEgap(ji, 7) = O(T~5/6) with empirical evidence for O(T~1).
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Main theorem

e Quantification of the gap to Nash equilibrium:

V(,u, V) = Eu,u

H
Zr(s, a, b)]

i=1

NEgap(, v) = sup V (u',v) — inf V(. vT)
ut v

Theorem 1

For (fi,0) the output of the policy optimization algorithm using
OFTRL with appropriately choosen stepsize 1,

NEgap(fi, 7) S O(H®/T)

OFTRL in Markov Games
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Classical analysis framework

e Goal: control the regret of max player
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Classical analysis framework

e Goal: control the regret of max player

e Regret bounded in Varition of Utility (RVU property)

t t t
maxy (u —u'afu’) Satfy ful —uH =y D =T
=1 =1 =1

regtl utility
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Classical analysis framework

e Goal: control the regret of max player

e Regret bounded in Varition of Utility (RVU property)

t t t
maxy (u —u'afu’) Satfy ful —uH =y D =T
=1 =1 =1

regtl utility

e Not avaliable for FTRL
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RVU bounds

e Variation in utility is typically controlled by variation of v, i.e.
opponent'’s policy

t t
regh < a+ B v == Y I — i
=1 =1

t t
regh <t Bt — i M= Y I v
=1 i=1
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RVU bounds

e Variation in utility is typically controlled by variation of v, i.e.
opponent'’s policy

t t
regh < a+ B v == Y I — i
=1 =1

t t
regy <a+ By |u' =T =y Do I = v
i=1 i=1

e RVU bound for sum of regrets

t
reg} + regh < 20+ (8 — ) <Z [ P /i u"llll)
=1

OFTRL in Markov Games 17/ 24



Non-negativity of the sum of regrets

In some settings, sum of regrets of the players are non-negative
(two-player zero-sum normal form game, swap regrets, etc.)

t

— —_— 2
S =+ et = < =
i=1 7B

Now one can control the variation in utility and thus control
individual regrets
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Analysis in Markov game

e Two parts of NE-gap: payoff regrets and estimation error of Q*

NE-gap < reg! , +regh ), + > _ o0},
t,h

where 0}, = [|Q}, = @}l
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Analysis in Markov game

e Two parts of NE-gap: payoff regrets and estimation error of Q*

NE-gap < reg! , +regh ), + > _ o0},
t,h

where 0}, = [|Q}, = @}l

e Last horizon is a normal form game so 6%, = 0. Estimation error
aggregate through the horizons

t

¢ isi t
0f <D0l +  max reg, ni1
i=1 T
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Approximate non-negativity

e Non-negativity of sum of regrets fails in Markorv games.
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Approximate non-negativity

e Non-negativity of sum of regrets fails in Markorv games.

e Solution: approximate non-negativity

¢
regz + regy, > —2 Z 5t
i=1

Recall 6], = [|Q}, — Q7 lloo
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Aggregation of estimation error and regret

e Interwined error aggregation through the horizons

t
regz < O(1/t) + Zaiéfl
i=1

extra term for our analysis
t

t i i t
op < § 041 + Iﬁl’f}? regh+1
i=1 v

e Naive approach of uniform weighting leads to a multiplicative
factor of log T at each horizon
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Log-free weights

e Weights {w'} and its normlized version {a}} from Jin et al.
(2018) Is Q-learning provably efficient?

e Increasing weight favors recent development

T T
logT o1 1\ 1
5: - T VSZEIQ%Z:(]."‘H)T

[

~
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Log-free weights

e Weights {w'} and its normlized version {a}} from Jin et al.
(2018) Is Q-learning provably efficient?

e Increasing weight favors recent development

T T
logT o1 1\ 1
5: - T VSZEIQ%Z:(]."‘H)T

[

~

e Reduce estimation error of ()}, aggregated over the horizons:
(logT)# — (1 +1/H)H
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Summary

e Use OFTRL to solve Nash equilibrium in a two-player zero-sum
Markov game

e Improve the analysis to show that the algorithm finds
O(1/T)-approximate Nash equilibrium

e Careful treatment of the interwined estimation error and payoff
regret aggregating over horizons

o Approximate non-negativity of sum of regrets

o Log-free weights
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Potential extensions

e OFTRL in multiplayer general-sum Markov games to find
correlated equilibrium

e Other notions of regret (interal regret, swap regret, etc.)

e Use of approximate non-negativity in other related problems
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