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Problem setting

• Finding Nash equilibrium in a finite-horizon two-player zero-sum
Markov games

OFTRL in Markov Games 2/ 24



Problem setting

1 At each horizon h of the game, the game is at a state s, max
player draws an action a ∈ A from a policy µ, min player draws
an action b ∈ B from a policy ν

2 Max player receives r(s, a, b) reward, min player receives
−r(s, a, b) reward

3 Then the game goes to a new state s′ in horizon h + 1. The
transition depends on the played actions a, b.

4 Max/min player tries the maximize/minimize total expected
reward
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Nash equilibrium

Value function (for max player) of policy pair (µ, ν)

V (µ, ν) = Eµ,ν

[
H∑

i=1
r(s, a, b)

]

Nash equilibrium: for two-player zero-sum Markov games, there exist
policy pair (µ⋆, ν⋆) such that

inf
ν

sup
µ

V (µ, ν) = V (µ⋆, ν⋆) = sup
µ

inf
ν

V (µ, ν)
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The problem

• Full information with known reward and transition functions

• The goal is to find a pair of policy in T iterations such that no
policy has ϵ-better expected reward V

• We focus on the dependency in T
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Q function

• Fix a state s and horizon h

• Qµ,ν
h (a, b): expected reward when max player choose a and

policy and min player choose b at horizon h and policy µ, ν at
horizon h + 1 to H.

• In a normal form game where there is no state transition, Q is
given and independent of µ, ν

Q⊤
h µh, Qhνh: utility vector for max and min player
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Estimating the Q function in Markov games

• We are most interested in the payoff of Nash equilibrium
Q∗

h = Qµ⋆,ν⋆

h

• In each iteration, we learn a new policy for max and min player.
It would be prohibitive to compute the full Qµ,ν

h (a, b).

• Alternatively, we maintain Qi
h(a, b) an estimate of Q∗

h(a, b) and
learn the policy in a fixed state s and horizon h as if it is a
normal form game
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Solving the policies with online learning

• In each iteration, we aim to learn the best policy for each player
with respect to the estimates {Qi

h}t−1
i=1

• Linear loss functions

limax,h(µ) =
〈
µ, Qi

hνi
h

〉
limin,h(ν) =

〈
ν, Qi

h
⊤

µi
h

〉
Q⊤

h µh, Qhνh: utility vector for max and min player
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Optimistic Follow-the-Regularzied Leader

Choose the regularized optimal policy (leader) with respect to reward
function Q in previous iterations.

µt
h(a) ∝ exp

 η

wt

t−1∑
i=1

wi

[
Qi

hνi
h

]
(a) + wt

[
Qt−1

h νt−1
h

]
(a)︸ ︷︷ ︸

optimistic term




νt
h(b) ∝ exp

(
η

wt

[
t−1∑
i=1

wi

[
Qi

h
⊤

µi
h

]
(b) + wt

[
Qt−1

h
⊤

µt−1
h

]
(b)
])
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Learning with optimism

µt(a) = argmaxµ

〈
µ,

t−1∑
i=1

wiu
i + wtM

t︸ ︷︷ ︸
optimistic term

〉− R(µ)
η/wt

where ui = Qiνi,M t = Qt−1νt−1

• Increasing weight that favors more recent iterations

• Optimistic term M t predicts ut

Rakhlin and Sridharan (2013) Online Learning with Predictable
Sequences
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Performance on normal form games

• FTRL works for normal form games with Õ(1/
√

T ) rate

• OFTRL works for normal form games with Õ(1/T ) rate

Daskalakis et al. (2021) Near-Optimal No-Regret Learning in
General Games.

Anagnostides et al. (2022) Uncoupled Learning Dynamics with
O(log T ) Swap Regret in Multiplayer Games
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Algorithm for Markov Games
Zhang et al., (2022) Policy Optimization for Markov Games: Unified
Framework and Faster Convergence

• Policy update with OFTRL

• Smooth value update:

Qt
h(a, b) = (1 − αt)Qt−1

h (a, b) + αt

(
r(a, b) + Q̃t

h+1(a, b)
)

Q̃t
h+1(a, b) = expected reward of horizon h + 1 to H after the

transition when µt, νt is played

• Output mixture policies

µ̂h(· | s) :=
T∑

t=1
αt

T µt
h(· | s)
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Theoretical challenges in Markov Games

• Except for the last horizon, the Nash equilibrium pay-off matrix
Q⋆ is not available

• In two-player zero-sum normal form game, the sum of regrets is
always non-negative. This fails in Markov game because of
approximation in Q⋆

• Aggregation of estimation errors and regrets over horizons of the
game.
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Main theorem

• Quantification of the gap to Nash equilibrium:

V (µ, ν) = Eµ,ν

[
H∑

i=1
r(s, a, b)

]

NEgap(µ, ν) := sup
µ†

V (µ†, ν) − inf
ν†

V (µ, ν†)

• Zhang et al., (2022) Policy Optimization for Markov Games:
Unified Framework and Faster Convergence:

NEgap(µ̂, ν̂) = Õ(T −5/6) with empirical evidence for O(T −1).
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Main theorem

• Quantification of the gap to Nash equilibrium:

V (µ, ν) = Eµ,ν

[
H∑

i=1
r(s, a, b)

]

NEgap(µ, ν) := sup
µ†

V (µ†, ν) − inf
ν†

V (µ, ν†)

Theorem 1
For (µ̂, ν̂) the output of the policy optimization algorithm using
OFTRL with appropriately choosen stepsize η,

NEgap(µ̂, ν̂) ≲ O(H5/T )
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Classical analysis framework

• Goal: control the regret of max player

• Regret bounded in Varition of Utility (RVU property)

max
µ†

t∑
i=1

⟨µ† − µi, αi
tu

i⟩︸ ︷︷ ︸
regt

1

≤ α+β
t∑

i=1
∥ui − ui−1∥∗︸ ︷︷ ︸

utility

−γ
t∑

i=1
∥µi−µi−1∥

• Not avaliable for FTRL
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RVU bounds

• Variation in utility is typically controlled by variation of ν, i.e.
opponent’s policy

regt
1 ≤ α + β

t∑
i=1

∥νi − νi−1∥1 − γ
t∑

i=1
∥µi − µi−1∥1

regt
2 ≤ α + β

t∑
i=1

∥µi − µi−1∥1 − γ
t∑

i=1
∥νi − νi−1∥1

• RVU bound for sum of regrets

regt
1 + regt

2 ≤ 2α + (β − γ)
(

t∑
i=1

∥νi − νi−1∥1 + ∥µi − µi−1∥1

)
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Non-negativity of the sum of regrets

In some settings, sum of regrets of the players are non-negative
(two-player zero-sum normal form game, swap regrets, etc.)

t∑
i=1

∥νi − νi−1∥1 + ∥µi − µi−1∥1 ≤ 2α

γ − β

Now one can control the variation in utility and thus control
individual regrets
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Analysis in Markov game

• Two parts of NE-gap: payoff regrets and estimation error of Q⋆

NE-gap ≤ regt
1,h + regt

2,h +
∑
t,h

αt
T δt

h

where δt
h = ∥Qt

h − Q⋆
h∥∞

• Last horizon is a normal form game so δt
H = 0. Estimation error

aggregate through the horizons

δt
h ≤

t∑
i=1

αi
tδ

i
h+1 + max

s,m=1,2
regt

m,h+1
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Approximate non-negativity

• Non-negativity of sum of regrets fails in Markorv games.

• Solution: approximate non-negativity

regt
µ + regt

ν ≥ −2
t∑

i=1
δt

h

Recall δt
h = ∥Qt

h − Q⋆
h∥∞
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Aggregation of estimation error and regret

• Interwined error aggregation through the horizons

regt
µ ≤ O(1/t) +

t∑
i=1

αi
tδ

t
h︸ ︷︷ ︸

extra term for our analysis

δt
h ≤

t∑
i=1

αi
tδ

i
h+1 + max

µ,ν,s
regt

h+1

• Naive approach of uniform weighting leads to a multiplicative
factor of log T at each horizon
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Log-free weights

• Weights {wi} and its normlized version {αi
t} from Jin et al.

(2018) Is Q-learning provably efficient?

• Increasing weight favors recent development

T∑
i=1

1
T

· 1
i

≈ log T

T
vs.

T∑
i=1

αi
T · 1

i
=
(

1 + 1
H

) 1
T

• Reduce estimation error of Qh aggregated over the horizons:
(log T )H → (1 + 1/H)H .
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Summary

• Use OFTRL to solve Nash equilibrium in a two-player zero-sum
Markov game

• Improve the analysis to show that the algorithm finds
O(1/T )-approximate Nash equilibrium

• Careful treatment of the interwined estimation error and payoff
regret aggregating over horizons

◦ Approximate non-negativity of sum of regrets

◦ Log-free weights
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Potential extensions

• OFTRL in multiplayer general-sum Markov games to find
correlated equilibrium

• Other notions of regret (interal regret, swap regret, etc.)

• Use of approximate non-negativity in other related problems
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