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Introduction

• Data appears as comparisons:
evaluating “Is A better than B” is easier than “how good is A”

• Goal: comparison data → item ranking
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Chess player rating
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Educational testing
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Reinforcement learning with human feedback (RLHF)
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Challenge 1: sparse data

Dense vs sparse comparison graph

Can we do estimation for sparsely connected comparison graph?
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Challenge 2: non-uniformity
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Uniform vs non-uniform comparison graph

Can we do estimation with non-uniformity in sampling?
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Outline

• Top-K ranking in Bradley-Terry-Luce (BTL) model with
uniform sampling

• Towards non-uniformity: result for general comparison graph

• Case 1: Heterogeneous sampling probability

• Case 2: Imbalanced bipartite structure
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Top-K ranking in Bradley-Terry-Luce (BTL) model

• Latent scores θ⋆ = [θ⋆1, . . . , θ
⋆
n], with ∆K = θ(K) − θ(K+1)

• Noisy binary pairwise comparisons from BTL (logistic) model:

P [ i ≻ j ] = sigmoid(θ⋆i − θ⋆j ) =
eθ

⋆
i

eθ
⋆
i + eθ

⋆
j

• Goal: identify the top-K items by latent score

Latent score Pairwise comparison

BTL

Estimation

9 / 23



Uniform sampling with BTL

• Uniform sampling: each pair (i, j) observed with i.i.d. prob p

• Typical approach: rank by estimated the latent scores θ⋆

• Need to control ℓ∞ error to be at most ∆K/2 so that

θ̂(K) > θ⋆(K) −∆/2 ≥ θ⋆(K+1) +∆/2 > θ̂(K+1)
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MLE is optimal for uniform sampling

Theorem (Chen, Fan, Ma, Wang, AOS’19)

Assuming np ≳ log n, regularized MLE achieves error rate and

∥θ̂ − θ⋆∥∞ ≲

√
log n

np

Optimal up to constant factors.
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Towards a more general regmie

The ℓ∞ analysis relies on

• independence between edges

• uniform sampling probability

Need a more general result to relax these assumptions
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Good spectrum is enough for general graph

• D: diagonal degree matrix A: the adjacency matrix
• L := D −A: (weighted) graph Laplacian
• λn−1(·): (n− 1)-th largest eigenvalues (algebraic connectivity)
• dmax: maximum degree

Theorem (Yang, Chen, Orecchia, Ma, COLT ’24)

Suppose λ5
n−1(L)/d4max ≳ log2(n), then weighted MLE on general

comparison graph satisfies∥∥∥θ̂WMLE − θ⋆
∥∥∥
∞

≲

√
log n

λn−1(L)

Good spectrum is enough for good estimation
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Heterogeneous sampling probability

• Non-uniform sampling: each pair (i, j) is sampled with
unknown probability pij ≥ p

• Uniform sampling has good spectrum:

dmax ≲ np, λn−1(L) ≳ np

• Non-uniform sampling can have bad spectrum

dmax ≳ n, λn−1(L) ≲ np
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Reweighting to recover good spectrum

• Observation: comparison graph for non-uniform sampling
always has a hidden Erdős–Rényi subgraph

• Select weights W by solving the semidefinite program

max
W

λn−1(L) s.t. dmax ≤ 2np

• Weight 1 on the Erdős–Rényi subgraph is a feasible solution

• The SDP always returns a weighted graph with a spectrum
that is at least as good as the Erdős–Rényi subgraph
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Result for heterogeneous sampling probability

The weighted comparison graph...
• has good spectrum
• has edge-dependent weights

... so we can invoke our result for general comparison graph to get

Theorem (Yang, Chen, Orecchia, Ma, COLT ’24)

Suppose np ≳ log3 n. Weighted MLE with the SDP-based
reweighting achieves error rate∥∥∥θ̂WMLE − θ⋆

∥∥∥
∞

≲

√
log n

np
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Non-uniformity: imbalanced bipartite structure
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Rasch model

• m items with latent scores θ⋆ = [θ⋆1, . . . , θ
⋆
m]

• n users with latent scores ζ⋆ = [ζ⋆1 , . . . , ζ
⋆
n]

• Each user-item pair (t, i) is sampled with i.i.d. probability p

• Observe outcome via logistic model

P[ user t ≺ item i ] = sigmoid(θ⋆i − ζ⋆t ) =
eθ

⋆
i

eζ
⋆
t + eθ

⋆
i

• Goal: estimate and identify top-K item parameters
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Challenge for Rasch model with imbalanced groups

• When m, p are fixed and n → ∞, Joint MLE on (θ⋆, ζ⋆) is
inconsistent for θ⋆ estimation

lim sup
n→∞

∥θ̂JMLE − θ⋆∥2 > 0

• Information gap: np samples / item vs mp samples / user

• Bad spectrum:

dmax ≳ np and λn+m−1(L) ≲ mp
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Random pairing MLE

• Re-tabulate user-item comparisons to item-item comparisons

A

1

B

A

1

B

• Reduction to BTL (logistic) model

P[i ≻ t ≻ j ]

P[ i ≻ t ≻ j or i ≺ t ≺ j ]
=

eθ
∗
i

eθ
∗
i + eθ

∗
j

• Reduce problem size by estimating item parameters θ⋆ directly
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Random pairing yields good spectrum

The resulting item-item comparison graph

• has dependent edges and heterogeneous sampling probability

• has good spectrum: λm−1(L) ≳ np and dmax ≲ np

So our results for general comparison graph comes in handy

Theorem (Yang and Ma, ’24)

When np ≳ log3 n and mp ≥ 2. RP-MLE achieves error rate

∥θRP-MLE − θ⋆∥∞ ≲

√
log n

np
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Summary

We study ranking with pairwise comparisons in sparse and
non-uniform sampling regime

• Good spectrum = good estimation

• Weighted MLE for non-uniform sampling

• Random pairing MLE for Rasch model with imbalanced groups

Papers:

• Top-K ranking with a monotone adversary. COLT 2024.

• Random pairing MLE for estimation of item parameters in
Rasch model. arXiv:2406.13989
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Bonus: Analysis through preconditioned gradient descent

• Consider the preconditioned gradient descent: let θ0 = θ⋆, run

θt+1 = θt − η∇2Lw(θ
⋆)†∇Lw(θ

t)

and θt → θ̂WMLE.

• Let δt := θt − θ⋆,

δt+1 = (1− η) δt − η
(
∇2Lw(θ

⋆)†Bϵ̂−∇2Lw(θ
⋆)†rt

)
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Bonus: Analysis through preconditioned gradient descent

• Consider the preconditioned gradient descent: let θ0 = θ⋆, run

θt+1 = θt − η∇2Lw(θ
⋆)†∇Lw(θ

t)

and θt → θ̂WMLE.

• Let δt := θt − θ⋆,

δt+1 = (1− η) δt︸ ︷︷ ︸
coordinate-wise
error contraction

−η
(
∇2Lw(θ

⋆)†Bϵ̂−∇2Lw(θ
⋆)†rt

)
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Bonus: Analysis through preconditioned gradient descent

• Consider the preconditioned gradient descent: let θ0 = θ⋆, run

θt+1 = θt − η∇2Lw(θ
⋆)†∇Lw(θ

t)

and θt → θ̂WMLE.

• Let δt := θt − θ⋆,

δt+1 = (1− η) δt − η
(
∇2Lw(θ

⋆)†Bϵ̂︸ ︷︷ ︸
first-order

noise

−∇2Lw(θ
⋆)†rt︸ ︷︷ ︸

second-order
residual

)
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