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Introduction

® Data appears as comparisons:
evaluating “Is A better than B" is easier than "how good is A"

® Goal: comparison data — item ranking
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Chess player rating
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Educational testing




Reinforcement learning with human feedback (RLHF)
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Challenge 1: sparse data

Dense vs sparse comparison graph

Can we do estimation for sparsely connected comparison graph?
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Challenge 2: non-uniformity

Uniform vs non-uniform comparison graph

Can we do estimation with non-uniformity in sampling?



Top-K ranking in Bradley-Terry-Luce (BTL) model with
uniform sampling

Towards non-uniformity: result for general comparison graph

Case 1: Heterogeneous sampling probability

Case 2: Imbalanced bipartite structure



Top-K ranking in Bradley-Terry-Luce (BTL) model

® Latent scores 6% = [07,...,05], with Ag = 0 gy — Ok 11)
¢ Noisy binary pairwise comparisons from BTL (logistic) model:
e
P[i = j] = sigmoid(#; — 07) =

T % px
et + 603'

® Goal: identify the top-K items by latent score
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Uniform sampling with BTL

¢ Uniform sampling: each pair (7, j) observed with i.i.d. prob p
e Typical approach: rank by estimated the latent scores 6*

® Need to control /o, error to be at most A /2 so that

Oy > 01y — D2 > 0y + A/2 > O



MLE is optimal for uniform sampling

Theorem (Chen, Fan, Ma, Wang, AOS'19)

Assuming np 2 logn, regularized MLE achieves error rate and

logn
np

”0 - 0*”00 S

Optimal up to constant factors.
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Towards a more general regmie

The ¢, analysis relies on
® independence between edges

e uniform sampling probability

Need a more general result to relax these assumptions



Good spectrum is enough for general graph

® D: diagonal degree matrix A: the adjacency matrix
e L:=D — A: (weighted) graph Laplacian
® \,—1(-): (n — 1)-th largest eigenvalues (algebraic connectivity)

® dnax: Maximum degree

Theorem (Yang, Chen, Orecchia, Ma, COLT '24)

Suppose \>_,(L)/d? .. = log?®(n), then weighted MLE on general
comparison graph satisfies

logn

o
H WMLE o ™ )\nfl(L)

Good spectrum is enough for good estimation
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Heterogeneous sampling probability

® Non-uniform sampling: each pair (4, j) is sampled with
unknown probability p;; > p

e Uniform sampling has good spectrum:
dmax S P, An—1(L) Z np

® Non-uniform sampling can have bad spectrum

dmax Z n, )\n—l(L) S np




Reweighting to recover good spectrum

Observation: comparison graph for non-uniform sampling
always has a hidden Erdés—Rényi subgraph

Select weights W by solving the semidefinite program

mV%xAn_l(L) st dmax < 2np

Weight 1 on the Erdés—Rényi subgraph is a feasible solution

The SDP always returns a weighted graph with a spectrum
that is at least as good as the Erdés—Rényi subgraph



Result for heterogeneous sampling probability

The weighted comparison graph...
® has good spectrum

® has edge-dependent weights
.. so we can invoke our result for general comparison graph to get
Theorem (Yang, Chen, Orecchia, Ma, COLT '24)

Suppose np = log® n. Weighted MLE with the SDP-based
reweighting achieves error rate

logn
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Non-uniformity: imbalanced bipartite structure
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Rasch model

® m items with latent scores 8* = [07,. .., 6%]
® n users with latent scores ¢* = [(T, ..., (]
® Each user-item pair (¢,4) is sampled with i.i.d. probability p
® Observe outcome via logistic model
o
Pl user t < item i | = sigmoid(0 — () = ——
et + e

® Goal: estimate and identify top-K item parameters



Challenge for Rasch model with imbalanced groups

® When m, p are fixed and n — oo, Joint MLE on (6*,¢(*) is
inconsistent for 0* estimation

limsup || yyvLe — 0%[2 > 0
n—oo

® Information gap: np samples / item vs mp samples / user

® Bad spectrum:

dmax Z np and )\nerfl(L) S mp



Random pairing MLE

® Re-tabulate user-item comparisons to item-item comparisons
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® Reduction to BTL (logistic) model

Pli =t j] 0

Pli =t=j or i <t=<j] e +¢e%

® Reduce problem size by estimating item parameters 6* directly
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Random pairing yields good spectrum

The resulting item-item comparison graph
® has dependent edges and heterogeneous sampling probability

® has good spectrum: A\,—1(L) 2 np and dyax S np

So our results for general comparison graph comes in handy

Theorem (Yang and Ma, '24)

When np > log® n and mp > 2. RP-MLE achieves error rate

logn
np

1OrPMLE — 07|00 S
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We study ranking with pairwise comparisons in sparse and
non-uniform sampling regime

® Good spectrum = good estimation

® Weighted MLE for non-uniform sampling

® Random pairing MLE for Rasch model with imbalanced groups
Papers:

® Top-K ranking with a monotone adversary. COLT 2024.

® Random pairing MLE for estimation of item parameters in
Rasch model. arXiv:2406.13989



Bonus: Analysis through preconditioned gradient descent

e Consider the preconditioned gradient descent: let 8° = 6*, run
0t =0 — V2L, (07) VL, (0
and 6% — §WM|_E.
® Let §' :=6' — 0%,

Sl = (1—n)t—q (v%w(e*)*Bg— V2L, (0%) rt)



Bonus: Analysis through preconditioned gradient descent

e Consider the preconditioned gradient descent: let 8° = 6*, run
0 = 0! — V2L, (0°) VL, (0Y)
and 0 — BwmLE.
o Let §' :=6' — 0%,

= (11—t —p <v2£w(9*)TBe— v2£w(9*)Trt)
——

coordinate-wise
error contraction



Bonus: Analysis through preconditioned gradient descent

e Consider the preconditioned gradient descent: let 8° = 6*, run
0 = 0! — V2L, (0°) VL, (0Y)
and 0 — BwmLE.
o Let §' :=6' — 0%,
S+l = (1-n)dt — n(v?cw(e*)TBe— v?cw(a*ﬂrt)

~
first-order second-order
noise residual




