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Noisy low-rank matrix completion

unknown rank-r matrix L* € R*"*"?
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One application: Netflix challenge

I] Users

Movies II

e Netflix challenge: Netflix provides highly incomplete ratings from
nearly 0.5 million users & 20k movies

e How to predict unseen user ratings for movies?
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Convex relaxation for matrix completion

observations: M;; =L}, +Ei;, (i,j)€Q

goal: estimate L*
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Convex relaxation for matrix completion

observations: M;j=L7; +Eij (i,j)€Q

goal: estimate L*

— Ll =320, oi(D)
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Known statistical guarantees

e random sampling: each (i,7) € Q indep. with prob. p
e random noise: i.i.d. sub-Gaussian noise with variance proxy o

e true matrix L* € R"*": r = O(1), well-conditioned, incoherent

Setting A < o,/np yields minimax optimal estimation rate (Negahban
and Wainwright '12, Chen et al '20)

Issue: tuning parameter A requires knowledge of both ¢ and p
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A solution: square root MC

— borrowing ideas from square root Lasso (Belloni et al. '11)

L., = argmin Z (L@j—Mz‘,j)z*'/\HLH*
LeR™™ (; jyen

squared loss

N
L., = argmin > (L — Mi,j)2 + Al

sqaure root squared loss
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The intuition

A is often chosen based on size of sub-gradient:

8% ( > (Lij— Mi,j)2> = 2Po(L — M) (1)
(4,7)€
9 2 Po(L — M)
(z%ﬂ Mia) = [Pa(L — M) ?

When L = L* , (1) is o-dependent, (2) is not!
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Prior works

— for ||L — L*||r, ignoring log factors

Minimax limit O(U\/%)

Gaiffas and Klopp '17 O(max{o, || L/ }v/n/p)

Zhang, Yan, and Wright '21 O(on?)
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Main results for r, x = O(1)

e Random sampling: Each (i, j) observed with prob p = @
e Random noise: Sub-Gaussian noise with sd o < | /72 || L*[|oo

¢ Regularity condition: L* is incoherent and well-conditioned

_ 2
L., = argmin Z (Lij — M, ;)" + M| L||.,
LGR"X" (ZJ)EQ
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Main results for r, x = O(1)

. .. . log3
e Random sampling: Each (i, j) observed with prob p 2 =&

e Random noise: Sub-Gaussian noise with sd o < | /72 || L*[|oo

¢ Regularity condition: L* is incoherent and well-conditioned

_ 2
L., = argmin Z (Lij — M, ;)" + M| L||.,
LGR"X" (ZJ)EQ

Theorem 1 (Yang and Ma, 2022)
Set A = 32/\/n. With high probability, L.,y achieves

n
[Levs = L7 [p S 04/~
p
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Implications

e Minimax optimal for a wide range of noise sizes
/[ np *

e Improves the error bound in (Zhang, Yan, and Wright '21) from

O(on?) to O(a+/n/p)

e A byproduct of our analysis: L. is nearly rank-r
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A peek at analysis

—follows general roadmap of bridging convex and nonconvex analysis, e.g. Chen
et al '20

. 2 .
e Sqrt-MC L, := argmin \/Z(m-)eg (Lij — M, ;)" + M|L||« is
LER"X"
hard to analyze due to non-smoothness.

e We know more about nonconvex schemes than the convex ones
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A peek at analysis

e “Translate” Sqrt-MC into smooth, nonconvex counterpart

2
. . Z(i,j)eQ ([XYT]Z',J‘ - Mi,j)
argmin min

O+ X [EHIY (3
X’Ye]R’nXT 9 9

e Suffices to show:

(1) Nonconvex solution (Xneyx; Ynewx) is close to Ley,

(2) (chvxa }fncvx) is optimal
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Conclusion and discussion

e We sharpen analysis of Sqrt-MC, a tuning-free convex scheme for
noisy matrix completion

e Analysis is based on a nonconvex proxy that is close to both
convex solution and ground truth

e Future directions: inference on L*
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