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Ranking from pairwise comparisons

pairwise comparisons for
ranking top tennis players
figure credit: Bozdki, Csaté,

Temesi

Bradley-Terry-Luce model: Assign latent score to each of n items
0* = [07,--- ,07] with

r'n

ot

P {item j beats item i} = ——
e’ +eJ

Goal: identify the set of top-K items under minimal sample size
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Sampling model

Sampling on comparison graph G = ([n],&): ¢,j are compared iff
(1,5) €€
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Sampling model

Sampling on comparison graph G = ([n],&): ¢,j are compared iff
(1,j) € €

For each (i,j) € &, obtain L paired comparisons

o*
- 1, with prob. -2~
o [

0, else 14



Prior art: MLE works for uniform sampling

e Uniform comparison graph: Erdés—Rényi graph Ggr ~ G(n,p)
Theorem 1 (CFMW, AoS '19; CGZ, AoS '22)

When p 2 10%, regularized or unregularized MLE achieves optimal
sample complexity for top-K ranking

5/ 14



Prior art: MLE works for uniform sampling

e Uniform comparison graph: Erdés—Rényi graph Ggr ~ G(n,p)
Theorem 1 (CFMW, AoS ’'19; CGZ, AoS '22)

When p 2 10%, regularized or unregularized MLE achieves optimal
sample complexity for top-K ranking

good guarantee
+ more realistic?

Uniform ? ? 7 General

good
guarantee

unsatisfactory
guarantee

unrealistic realistic
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Top- K ranking with a monotone adversary

—aka semi-random adversary

e
SRR NCTT

Ger = ([n], EEr) Gsr = ([n],Esr) with added edges

Special case: non-uniform sampling (i, j) € £ with probability p;; > p
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Top- K ranking with a monotone adversary

—aka semi-random adversary

n-'t.t-\:ik ety
Lt LR e
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Special case: non-uniform sampling (i, j) € £ with probability p;; > p

Can we identify top-K items under monotone adversary? J

6/ 14



Top- K ranking with a monotone adversary

—aka semi-random adversary

n-'t.t-\:ik ety
Lt LR e

Gsr = ([n], Esr) with added edges

Special case: non-uniform sampling (i, j) € £ with probability p;; > p

Can we identify top-K items under monotone adversary? Not clear! J
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Intuition: mimicking oracle

If we have oracle knowledge of Eggr
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We would run MLE using edges in Egr
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Intuition: mimicking oracle

If we have oracle knowledge of Eggr

{

We would run MLE using edges in Egr

{4

Equivalent to weighted MLE with unit weight on Egr

4
4

Can we find weights that mimic the above?

We don't know Egr
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Optimal control of entrywise error

Theorem 2 (Yang, Chen, Oreccia, Ma, 2024)

When p 2 % and npL > log3(n), with some proper reweighting,
weighted MLE OAw obeys

~ log(n)
0, — 0|0 < 4| —=2
16— 0%l 5 /2

will come back later to explain what is proper reweighting
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Near-optimal sample complexity
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A few words about analysis

o /9 loss vs. £ loss
e Prior analysis e.g., leave-one-out analysis relies heavily on

independence of edges, and also is not transparent in terms of
graph properties
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Master theorem for weighted MLE

® Wnax = Max; ; w;; be the maximum weight
® dmax = MaX;c[y) ;.4 Wij be the maximum (weighted) degree
e Weighted graph Laplacian
Lw = Z Wi (ei — ej)(ei — ej)T
(ivj)li>j
Theorem 3 (Yang, Chen, Oreccia, Ma, 2024)

When graph is connected, as long as

Wmax (dmax)4 10g3 (n)

L @y

with high probability, we have

< |Wmax log(n)

N _ p*
HBU} 9 HOO ~ )\n—l(Lw)L
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Master theorem for weighted MLE

e LOO-free analysis that allows dependent edges
e Depends explicitly only on graph properties

e Applicable to other settings:
“Random pairing MLE for estimation of item parameters in
Rasch model”, Yang and Ma, 2024
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Optimization-based reweighting

e Master theorem motivates us to consider following SDP
max Ap—1(Ly)
w
s.t. Zwij <2np forall j
i
0<w; <1 foralli,j

e Since unit weights on xR is feasible, we know the maximizer is
at least as good as that for Erdés—Rényi graph

e Approximately solvable in near-linear time
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Concluding remarks

Weighted MLE is statistically and computationally efficient for top-K
ranking with monotone adversary

e Novel analysis of weighted MLE with general weights
e Efficient algorithm to approximately solve SDP-based reweighting

Future directions:
e |s weighted MLE necessary?

e Stronger adversary?
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