Top-K Ranking with a Monotone Adversary

Yuepeng Yang
Department of Statistics, UChicago

COLT, July. 2024

Cong Ma UChicago Stat

Antares Chen UChicago CS

Lorenzo Orecchia UChicago CS

Ranking from pairwise comparisons

pairwise comparisons for ranking top tennis players figure credit: Bozóki, Csató, Temesi

Bradley-Terry-Luce model: Assign latent score to each of n items $\theta^* = [\theta_1^*, \dots, \theta_n^*]$ with

$$\mathbb{P}\left\{\text{item } j \text{ beats item } i\right\} = \frac{e^{\theta_i^\star}}{e^{\theta_i^\star} + e^{\theta_j^\star}}$$

Goal: identify the set of top-K items under minimal sample size

Sampling model

Sampling on comparison graph $\mathcal{G} = ([n], \mathcal{E})$: i, j are compared iff

 $(i,j) \in \mathcal{E}$

Sampling model

Sampling on comparison graph $\mathcal{G}=([n],\mathcal{E})$: i,j are compared iff $(i,j)\in\mathcal{E}$

For each $(i, j) \in \mathcal{E}$, obtain L paired comparisons

$$y_{i,j}^{(l)} \overset{\text{ind.}}{=} \begin{cases} 1, & \text{with prob.} \ \frac{e^{\theta \overset{\star}{j}}}{e^{\theta \overset{\star}{i}} + e^{\theta \overset{\star}{j}}} \\ 0, & \text{else} \end{cases} \qquad 1 \leq l \leq L$$

4/14

Prior art: MLE works for uniform sampling

ullet Uniform comparison graph: Erdős–Rényi graph $\mathcal{G}_{\mathrm{ER}} \sim \mathcal{G}(n,p)$

Theorem 1 (CFMW, AoS '19; CGZ, AoS '22)

When $p \gtrsim \frac{\log n}{n}$, regularized or unregularized MLE achieves optimal sample complexity for top-K ranking

Prior art: MLE works for uniform sampling

ullet Uniform comparison graph: Erdős–Rényi graph $\mathcal{G}_{\mathrm{ER}} \sim \mathcal{G}(n,p)$

Theorem 1 (CFMW, AoS '19; CGZ, AoS '22)

When $p \gtrsim \frac{\log n}{n}$, regularized or unregularized MLE achieves optimal sample complexity for top-K ranking

Top-K ranking with a monotone adversary

-aka semi-random adversary

$$\mathcal{G}_{\mathrm{SR}} = ([n], \mathcal{E}_{\mathrm{SR}})$$
 with added edges

Special case: non-uniform sampling $(i,j) \in \mathcal{E}$ with probability $p_{ij} \geq p$

Top-K ranking with a monotone adversary

-aka semi-random adversary

$$\mathcal{G}_{\mathrm{ER}} = ([n], \mathcal{E}_{\mathrm{ER}})$$

 $\mathcal{G}_{\mathrm{SR}} = ([n], \mathcal{E}_{\mathrm{SR}})$ with added edges

Special case: non-uniform sampling $(i,j) \in \mathcal{E}$ with probability $p_{ij} \geq p$

Can we identify top-K items under monotone adversary?

Top-K ranking with a monotone adversary

—aka semi-random adversary

$$\mathcal{G}_{\mathrm{ER}} = ([n], \mathcal{E}_{\mathrm{ER}})$$

 $\mathcal{G}_{\mathrm{SR}} = ([n], \mathcal{E}_{\mathrm{SR}})$ with added edges

Special case: non-uniform sampling $(i,j) \in \mathcal{E}$ with probability $p_{ij} \geq p$

Can we identify top-K items under monotone adversary? Not clear!

If we have oracle knowledge of $\mathcal{E}_{\mathrm{ER}}$

If we have oracle knowledge of $\mathcal{E}_{\mathrm{ER}}$

 $\hat{\mathbb{I}}$

We would run MLE using edges in $\mathcal{E}_{\mathrm{ER}}$

If we have oracle knowledge of $\mathcal{E}_{\mathrm{ER}}$

 \iint

We would run MLE using edges in $\mathcal{E}_{\mathrm{ER}}$

Equivalent to weighted MLE with unit weight on $\mathcal{E}_{\mathrm{ER}}$

If we have oracle knowledge of $\mathcal{E}_{\mathrm{ER}}$

 $\hat{\mathbb{I}}$

We would run MLE using edges in $\mathcal{E}_{\mathrm{ER}}$

 $\hat{\mathbb{U}}$

Equivalent to weighted MLE with unit weight on $\mathcal{E}_{\mathrm{ER}}$

 $\hat{\mathbb{I}}$

We don't know $\mathcal{E}_{\mathrm{ER}}$

If we have oracle knowledge of $\mathcal{E}_{\mathrm{ER}}$

$$\hat{\mathbb{I}}$$

We would run MLE using edges in $\mathcal{E}_{\mathrm{ER}}$

Equivalent to weighted MLE with unit weight on $\mathcal{E}_{\mathrm{ER}}$

We don't know $\mathcal{E}_{\mathrm{ER}}$

Can we find weights that mimic the above?

Optimal control of entrywise error

Theorem 2 (Yang, Chen, Oreccia, Ma, 2024)

When $p\gtrsim \frac{\log(n)}{n}$ and $npL\gtrsim \log^3(n)$, with some proper reweighting, weighted MLE $\widehat{\pmb{\theta}}_w$ obeys

$$\|\widehat{\boldsymbol{\theta}}_w - \boldsymbol{\theta}^{\star}\|_{\infty} \lesssim \sqrt{\frac{\log(n)}{npL}}$$

will come back later to explain what is proper reweighting

Optimal control of entrywise error

Theorem 2 (Yang, Chen, Oreccia, Ma, 2024)

When $p\gtrsim \frac{\log(n)}{n}$ and $npL\gtrsim \log^3(n)$, with some proper reweighting, weighted MLE $\widehat{\pmb{\theta}}_w$ obeys

$$\|\widehat{\boldsymbol{\theta}}_w - {\boldsymbol{\theta}}^{\star}\|_{\infty} \lesssim \sqrt{\frac{\log(n)}{npL}}$$

will come back later to explain what is proper reweighting

Near-optimal sample complexity

A few words about analysis

- ℓ_2 loss vs. ℓ_∞ loss
- Prior analysis e.g., leave-one-out analysis relies heavily on independence of edges, and also is not transparent in terms of graph properties

Master theorem for weighted MLE

- $w_{\max} \coloneqq \max_{i,j} w_{ij}$ be the maximum weight
- $d_{\max} \coloneqq \max_{i \in [n]} \sum_{j:j \neq i} w_{ij}$ be the maximum (weighted) degree
- Weighted graph Laplacian

$$oldsymbol{L}_w\coloneqq\sum_{(i,j):i>j}w_{ij}(oldsymbol{e}_i-oldsymbol{e}_j)(oldsymbol{e}_i-oldsymbol{e}_j)^ op$$

Theorem 3 (Yang, Chen, Oreccia, Ma, 2024)

When graph is connected, as long as

$$L \gg \frac{w_{\text{max}}(d_{\text{max}})^4 \log^3(n)}{(\lambda_{n-1}(\mathbf{L}_w))^5},$$

with high probability, we have

$$\|\widehat{\boldsymbol{\theta}}_w - {\boldsymbol{\theta}}^{\star}\|_{\infty} \lesssim \sqrt{\frac{w_{\max}\log(n)}{\lambda_{n-1}(\boldsymbol{L}_w)L}}$$

Master theorem for weighted MLE

- LOO-free analysis that allows dependent edges
- Depends explicitly only on graph properties
- Applicable to other settings:
 "Random pairing MLE for estimation of item parameters in Rasch model", Yang and Ma, 2024

Optimization-based reweighting

Master theorem motivates us to consider following SDP

$$\begin{aligned} \max_{\pmb{w}} \quad & \lambda_{n-1}(\pmb{L}_{w}) \\ \text{s.t.} \quad & \sum_{i} w_{ij} \leq 2np \quad \text{ for all } j \\ & 0 \leq w_{ij} \leq 1 \quad \text{ for all } i,j \end{aligned}$$

- Since unit weights on \mathcal{E}_{ER} is feasible, we know the maximizer is at least as good as that for Erdős–Rényi graph
- Approximately solvable in near-linear time

Concluding remarks

Weighted MLE is statistically and computationally efficient for top- $\!K\!$ ranking with monotone adversary

- Novel analysis of weighted MLE with general weights
- Efficient algorithm to approximately solve SDP-based reweighting

Future directions:

- Is weighted MLE necessary?
- Stronger adversary?

Papers:

- Y. Yang, A. Chen, L. Orecchia, C. Ma, "Top-K ranking with a monotone adversary," COLT, 2024
- Y. Yang, C. Ma, "Random pairing MLE for estimation of item parameters in Rasch model" arXiv, 2024